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Figure 8.32: Imperfect mixing (top reactor) leads to formation of an

A-rich zone, which is modeled as a small CSTR feeding

a second CSTR (bottom two reactors).

8.5 Examples in Which Mixing is Critical

Returning to the topic of mixing, we would like to close the chapter by

presenting a few more chemical mechanisms for which reactor mixing

can play a critical role.

Example 8.5: Mixing two liquid-phase streams in a stirred tank

A classic mixing problem arises when we must bring two liquid-phase

feed streams together to perform the second-order reaction

A+ B
k1
-→ C (8.59)

in the presence of the undesirable side reaction

A
k2
-→ D (8.60)

If the rate of the second degradation reaction is fast compared to the

rate of mixing of the two feed streams, we can anticipate problems. To

understand what happens in this situation, consider the mixing model

depicted in Figure 8.32. Component A is assumed to be the limiting
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Parameter Value Units

k1 1 min−1

k2 2 L/mol·min

n 2

θ1 = VR1/Q2 1 min

θ2 = VR2/Q2 2 min

θ = VR/Q2

= θ1 + θ2 3 min

α =Q1/Q2 0.1

ρ =Qr/Q2 varies

Table 8.3: Reactor and kinetic parameters for feed-mixing example.

reactant. It is added at a low flowrate to a CSTR that contains an ex-

cess of reactant B. In the top figure we depict the ideal-mixing case in

which the rate of mixing is arbitrarily fast compared to the rate of ei-

ther reaction. But this ideal mixing may be impossible to achieve if the

reaction rates are reasonably large. So in the bottom figure, we model

the formation of an A-rich zone near the feed entry point. This small

CSTR exchanges mass with a larger reactor that contains the excess of

reactant B. We can vary the recycle flowrate between the two CSTRs,

Qr , and the sizes of the two reactors, VR1 and VR2, to vary the degree

of mixing. For large Qr , we expect the two-reactor mixing model to

approach the single, ideally mixed CSTR.

As discussed in Chapter 4, the conversion and yield are the usual

quantities of interest in competing parallel reactions of the type given

in Reactions 8.59 and 8.60. We assume the density of this liquid-phase

system is constant, and define the overall conversion of reactant A and

yield of desired product C as follows:

xA =
Q1cAf − (Q1 +Q2)cA

Q1cAf
yC =

(Q1 +Q2)cC
Q1cAf − (Q1 +Q2)cA

Given the parameters and rate constants in Table 8.3, calculate xA and

yC versus Qr for the two-reactor mixing model shown in Figure 8.32,

and compare the result to the single, well-mixed reactor. Then calcu-

late the residence-time distribution P(θ) for tracer injected with the A

feed stream for the two models. Discuss whether or not the residence-

time distribution is a reliable indicator for problems with yield in the

imperfectly mixed reactor.
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Solution

The steady-state mass balance for the single, well-mixed CSTR is

0 =Q1cAf − (Q1 +Q2)cA − (k1cAcB + k2c
n
A)VR

0 =Q2cBf − (Q1 +Q2)cB − k1cAcBVR

Defining the following parameters

α = Q1

Q2
θ = VR

Q2
ρ = Qr

Q2

allows us to write these as

0 = αcAf − (1+α)cA − (k1cAcB + k2c
n
A)θ

0 = cBf − (1+α)cB − k1cAcBθ

We can solve numerically the two equations for the two unknowns

cA, cB . The concentration of C in the outflow is determined from the

change in the concentration of B,

(Q1 +Q2)cC =Q2cBf − (Q1 +Q2)cB

Using this relationship and the defined parameters gives for conversion

and yield,

xA =
αcAf − (1+α)cA

αcAf
yC =

cBf − (1+α)cB
αcAf − (1+α)cA

For the two-reactor system, we write mass balances for each reactor.

Let cA1, cA2, cB1, cB2 be the unknown A and B concentrations in the two-

reactors, respectively. The mass balances are

Reactor 1:

0 =Q1cAf − (Q1 +Qr )cA1 +QrcA2 − (k1cA1cB1 + k2c
2
A1)VR1

0 = −(Q1 +Qr )cB1 +QrcB2 − k1cA1cB1VR1

Reactor 2:

0 = (Q1 +Qr )cA1 −QrcA2 − (Q1 +Q2)cA2 − (k1cA2cB2 + k2c
2
A2)VR2

0 = Q2cBf + (Q1 +Qr )cB1 −QrcB2 − (Q1 +Q2)cB2 − (k1cA2cB2)VR2
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We can summarize this case using the previously defined variables as

four equations in four unknowns

0 = αcAf − (α+ ρ)cA1 + ρcA2 − (k1cA1cB1 + k2c
2
A1)θ1

0 = −(α + ρ)cB1 + ρcB2 − k1cA1cB1θ1

0 = (α+ ρ)cA1 − ρcA2 − (1+α)cA2 − (k1cA2cB2 + k2c
2
A2)θ2

0 = cBf + (α+ ρ)cB1 − ρcB2 − (1+α)cB2 − (k1cA2cB2θ2

Figures 8.33 and 8.34 show the yield and conversion for the two cases

as a function of Qr . The conversion is not adversely affected by the

poor mixing. In fact, the conversion in the two-reactor system is higher

than the single, well-mixed reactor. Notice, however, that at low values

ofQr , which corresponds to poor mixing at the feed location, the yield

changes from more than 90% to less than 15%. Low yield is a qualita-

tively different problem than low conversion. If the conversion is low,

we can design a separation system to remove the unreacted A and recy-

cle it, or use it as feed in a second reactor. With low yield, however, the

A has been irreversibly converted to an undesired product D. The raw

material is lost and cannot be recovered. It is important to diagnose

the low yield as a reactor mixing problem, and fix the problem at the

reactor. A yield loss cannot be recovered by downstream processing.

Next we compute the outcome of injecting a unit step change in a

tracer in the A feed stream. We solve the transient CSTR balances and

calculate the tracer concentration at the outlet. Because the tracer does

not take part in any reactions, this can be done analytically or numer-

ically. The result is shown in Figure 8.35. We see the familiar single

CSTR step response. For the two-reactor mixing model, when ρ = 0,

which corresponds to the poorest mixing and lowest yield, the step

test does reliably indicate the poor mixing. At the end of this chapter

and also in Chapter 9 we show how to use this step response to deter-

mine the best value of ρ to model the mixing. When ρ is reasonably

large,Qr =Q2, and the single CSTR and two-reactor cases have similar

yields and step responses.

Notice in all three step responses, the tracer concentration reaches

only cIs = 0.091 = α/(1+α) because we inject tracer in only one of the

two feed streams. �

This example is one of the classic sets of reactions in which mixing

has a significant impact on the reactor performance and the product

yield. It deserves careful study because it builds intuition and leads

us to ask good questions when confronted with more complex cases.
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Figure 8.33: Conversion of reactant A for single, ideal CSTR, and as

a function of internal flowrate, ρ = Qr/Q2, in a 2-CSTR

mixing model.
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Figure 8.34: Yield of desired product C for single, ideal CSTR, and as

a function of internal flowrate, ρ = Qr/Q2, in a 2-CSTR

mixing model.
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Figure 8.35: Step response for single, ideal CSTR, and 2-CSTR mixing

model with ρ = 0,1.

For example, Villa et al. [23] discuss similar issues that arise in more

complex polymerization reaction engineering problems.

Example 8.6: Maximizing yield in dispersed plug flow

Consider the following two liquid-phase reactions in which B is the

desired product

A
k1
-→ B, r1 = k1cA (8.61)

2B
k2
-→ C, r2 = k2c2

B (8.62)

The second reaction can represent the first step in a polymerization

process of species B, which is undesirable in this case.

Because the second reaction is second order in B, it is desirable to

keep the average B concentration in the reactor low, to avoid yield

losses, but achieve high B concentration near the reactor exit to maxi-

mize the production rate. Intuitively the CSTR is a bad choice, because

it maintains the same B concentration everywhere in the reactor. A PFR


