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sumed, the increase in the rate constant is more significant and the

product r = kcA is larger inside the pellet. Because the effectiveness

factor compares the actual rate in the pellet to the rate at the surface

conditions, it is possible for the effectiveness factor to exceed unity in

a nonisothermal pellet, which we see in Figure 7.19.

A second striking feature of the nonisothermal pellet is that multi-

ple steady states are possible. Consider the case Φ = 0.01, β = 0.4 and

γ = 30 shown in Figure 7.19. The effectiveness factor has three possi-

ble values for this case. We show in Figures 7.20 and 7.21 the solution

to Equation 7.74 for this case. The three temperature and concentra-

tion profiles correspond to an ignited steady state (C), an extinguished

steady state (A), and an unstable intermediate steady state (B). As we

showed in Chapter 6, whether we achieve the ignited or extinguished

steady state in the pellet depends on how the reactor is started. Aris

provides further discussion of these cases and shows that many steady-

state solutions are possible in some cases [3, p. 51]. For realistic values

of the catalyst thermal conductivity, however, the pellet can often be

considered isothermal and the energy balance can be neglected [17].

Multiple steady-state solutions in the particle may still occur in prac-

tice, however, if there is a large external heat transfer resistance.

7.6 Multiple Reactions

As the next step up in complexity, we consider the case of multiple

reactions. Some analytical solutions are available for simple cases with

multiple reactions, and Aris provides a comprehensive list [2], but the

scope of these is limited. We focus on numerical computation as a

general method for these problems. Indeed, we find that even numeri-

cal solution of some of these problems is challenging for two reasons.

First, steep concentration profiles often occur for realistic parameter

values, and we wish to compute these profiles accurately. It is not un-

usual for species concentrations to change by 10 orders of magnitude

within the pellet for realistic reaction and diffusion rates. Second, we

are solving boundary-value problems because the boundary conditions

are provided at the center and exterior surface of the pellet. Boundary-

value problems (BVPs) are generally much more difficult to solve than

initial-value problems (IVPs).

A detailed description of numerical methods for this problem is

out of place here. We use the collocation method, which is described

in more detail in Appendix A. The next example involves five species,
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Figure 7.20: Dimensionless concentration versus radius for the non-

isothermal spherical pellet: lower (A), unstable middle

(B), and upper (C) steady states.
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Figure 7.21: Dimensionless temperature versus radius for the non-

isothermal spherical pellet: lower (A), unstable middle

(B), and upper (C) steady states.
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two reactions with Hougen-Watson kinetics, and both diffusion and

external mass-transfer limitations.

Example 7.2: Catalytic converter

Consider the oxidation of CO and a representative volatile organic such

as propylene in a automobile catalytic converter containing spheri-

cal catalyst pellets with particle radius 0.175 cm. The particle is sur-

rounded by a fluid at 1.0 atm pressure and 550 K containing 2% CO, 3%

O2 and 0.05% (500 ppm) C3H6. The reactions of interest are

CO+ 1

2
O2 -→ CO2 (7.77)

C3H6 +
9

2
O2 -→ 3CO2 + 3H2O (7.78)

with rate expressions given by Oh et al. [16]

r1 =
k1cCOcO2

(1+KCOcCO +KC3H6cC3H6)
2

(7.79)

r2 =
k2cC3H6cO2

(1+KCOcCO +KC3H6cC3H6)
2

(7.80)

The rate constants and the adsorption constants are assumed to have

Arrhenius form. The parameter values are given in Table 7.5 [16]. The

mass-transfer coefficients are taken from DeAcetis and Thodos [9]. The

pellet may be assumed to be isothermal. Calculate the steady-state

pellet concentration profiles of all reactants and products.

Solution

We solve the steady-state mass balances for the three reactant species,

Dj
1

r 2

d

dr

(
r 2
dcj

dr

)
= −Rj (7.81)

with the boundary conditions

dcj

dr
= 0 r = 0 (7.82)

Dj
dcj

dr
= kmj

(
cjf − cj

)
r = R (7.83)

j = {CO,O2,C3H6}. The model is solved using the collocation method.

The reactant concentration profiles are shown in Figures 7.22 and 7.23.
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Figure 7.22: Concentration profiles of reactants; fluid concentration

of O2 (×), CO (+), C3H6 (∗).
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Parameter Value Units Parameter Value Units

P 1.013× 105 N/m2 k10 7.07× 1019 mol/cm3· s

T 550 K k20 1.47× 1021 mol/cm3· s

R 0.175 cm KCO0 8.099× 106 cm3/mol

E1 13,108 K KC3H60 2.579× 108 cm3/mol

E2 15,109 K DCO 0.0487 cm2/s

ECO −409 K DO2
0.0469 cm2/s

EC3H6
191 K DC3H6

0.0487 cm2/s

cCOf 2.0 % kmCO 3.90 cm/s

cO2f
3.0 % kmO2

4.07 cm/s

cC3H6f
0.05 % kmC3H6

3.90 cm/s

Table 7.5: Kinetic and mass-transfer parameters for the catalytic con-

verter example.

Notice that O2 is in excess and both CO and C3H6 reach very low values

within the pellet. The log scale in Figure 7.23 shows that the concen-

trations of these reactants change by seven orders of magnitude. Obvi-

ously the consumption rate is large compared to the diffusion rate for

these species. The external mass-transfer effect is noticeable, but not

dramatic.

The product concentrations could simply be calculated by solving

their mass balances along with those of the reactants. Because we have

only two reactions, however, the concentrations of the products are

computable from the stoichiometry and the mass balances. If we take

the following mass balances

DCO∇2cCO = −RCO = r1

DC3H6∇2cC3H6 = −RC3H6 = r2

DCO2∇2cCO2 = −RCO2 = −r1 − 3r2

DH2O∇2cH2O = −RH2O = −3r2

and form linear combinations to eliminate the reaction-rate terms for

the two products, we obtain

DCO2∇2cCO2 = −DCO∇2cCO − 3DC3H6∇2cC3H6

DH2O∇2cH2O = −3DC3H6∇2cC3H6

Because the diffusivities are assumed constant, we can integrate these
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once on (0, r ) to obtain for the products

DCO2

dcCO2

dr
= −DCO

dcCO

dr
− 3DC3H6

dcC3H6

dr

DH2O
dcH2O

dr
= −3DC3H6

dcC3H6

dr

The exterior boundary condition can be rearranged to give

cj − cjf =
Dj

kmj

dcj

dr

Substituting in the relationships for the products gives

cCO2 = cCO2f −
1

kmCO2

[
DCO

dcCO

dr
+ 3DC3H6

dcC3H6

dr

]

cH2O = cH2Of −
1

kmH2O

[
3DC3H6

dcC3H6

dr

]

The right-hand sides are available from the solution of the material bal-

ances of the reactants. Plotting these results for the products gives Fig-

ure 7.24. We see that CO2 is the main product. Note the products flow

out of the pellet, unlike the reactants shown in Figures 7.22 and 7.23,

which are flowing into the pellet. �

7.7 Fixed-Bed Reactor Design

Given our detailed understanding of the behavior of a single catalyst

particle, we now are prepared to pack a tube with a bed of these par-

ticles and solve the fixed-bed reactor design problem. In the fixed-bed

reactor, we keep track of two phases. The fluid-phase streams through

the bed and transports the reactants and products through the reactor.

The reaction-diffusion processes take place in the solid-phase catalyst

particles. The two phases communicate to each other by exchanging

mass and energy at the catalyst particle exterior surfaces. We have

constructed a detailed understanding of all these events, and now we

assemble them together.

7.7.1 Coupling the Catalyst and Fluid

We make the following assumptions:

1. Uniform catalyst pellet exterior. Particles are small compared to

the length of the reactor.
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Figure 7.24: Concentration profiles of the products; fluid concentra-

tion of CO2 (×), H2O (+).

2. Plug flow in the bed, no radial profiles.

3. Neglect axial diffusion in the bed.

4. Steady state.

Fluid. In the fluid phase, we track the molar flows of all species, the

temperature and the pressure. We can no longer neglect the pressure

drop in the tube because of the catalyst bed. We use an empirical cor-

relation to describe the pressure drop in a packed tube, the well-known

Ergun equation [10]. Therefore, we have the following differential equa-

tions for the fluid phase

dNj

dV
= Rj (7.84)

QρĈp
dT

dV
= −

∑

i

∆HRiri +
2

R
Uo(Ta − T) (7.85)

dP

dV
= −(1− εB)

Dpε
3
B

Q

A2
c

[
150

(1− εB)µf
Dp

+ 7

4

ρQ

Ac

]
(7.86)
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The fluid-phase boundary conditions are provided by the known feed

conditions at the tube entrance

Nj = Njf , z = 0 (7.87)

T = Tf , z = 0 (7.88)

P = Pf , z = 0 (7.89)

Catalyst particle. Inside the catalyst particle, we track the concen-

trations of all species and the temperature. We neglect any pressure

effect inside the catalyst particle. We have the following differential

equations for the catalyst particle

Dj
1

r 2

d

dr

(
r 2
dc̃j

dr

)
= −R̃j (7.90)

k̂
1

r 2

d

dr

(
r 2dT̃

dr

)
=
∑

i

∆HRir̃ i (7.91)

The boundary conditions are provided by the mass-transfer and heat-

transfer rates at the pellet exterior surface, and the zero slope condi-

tions at the pellet center

dc̃j

dr
= 0 r = 0 (7.92)

Dj
dc̃j

dr
= kjm(cj − c̃j) r = R (7.93)

dT̃

dr
= 0 r = 0 (7.94)

k̂
dT̃

dr
= kT (T − T̃ ) r = R (7.95)

Coupling equations. Finally, we equate the production rate Rj expe-

rienced by the fluid phase to the production rate inside the particles,

which is where the reaction takes place. Analogously, we equate the

enthalpy change on reaction experienced by the fluid phase to the en-

thalpy change on reaction taking place inside the particles. These ex-
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pressions are given below

Rj︸︷︷︸
rate j / vol

= − (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp

Vp
Dj

dc̃j

dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate j / vol cat

(7.96)

∑

i

∆HRiri

︸ ︷︷ ︸
rate heat / vol

= (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp

Vp
k̂
dT̃

dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate heat / vol cat

(7.97)

Notice we require the bed porosity to convert from the rate per volume

of particle to the rate per volume of reactor. The bed porosity or void

fraction, εB , is defined as the volume of voids per volume of reactor.

The volume of catalyst per volume of reactor is therefore 1− εB . This

information can be presented in a number of equivalent ways. We can

easily measure the density of the pellet, ρp, and the density of the bed,

ρB . From the definition of bed porosity, we have the relation

ρB = (1− εB)ρp

or if we solve for the volume fraction of catalyst

1− εB = ρB/ρp

Figure 7.25 shows the particles and fluid, and summarizes the coupling

relations between the two phases.

Equations 7.84–7.97 provide the full packed-bed reactor model given

our assumptions. We next examine several packed-bed reactor prob-

lems that can be solved without solving this full set of equations. Fi-

nally, we present Example 7.7, which requires numerical solution of the

full set of equations.

Example 7.3: First-order, isothermal fixed-bed reactor

Use the rate data presented in Example 7.1 to find the fixed-bed reactor

volume and the catalyst mass needed to convert 97% of A. The feed to

the reactor is pure A at 1.5 atm at a rate of 12 mol/s. The 0.3 cm

pellets are to be used, which leads to a bed density ρB = 0.6 g/cm3.

Assume the reactor operates isothermally at 450 K and that external

mass-transfer limitations are negligible.
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Figure 7.25: Fixed-bed reactor volume element containing fluid and

catalyst particles; the equations show the coupling be-

tween the catalyst particle balances and the overall re-

actor balances.

Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− εB)ηkcA

between the limitsNAf and 0.03NAf , in which cA is the A concentration

in the fluid. For the first-order, isothermal reaction, the Thiele modulus

is independent of A concentration, and is therefore independent of

axial position in the bed

Φ = R
3

√
k

DA
= 0.3cm

3

√
2.6s−1

0.007cm2/s
= 1.93

The effectiveness factor is also therefore a constant

η = 1

Φ

[
1

tanh 3Φ
− 1

3Φ

]
= 1

1.93

[
1− 1

5.78

]
= 0.429

In Chapter 4, Equation 4.75, we express the concentration of A in terms

of molar flows for an ideal-gas mixture

cA =
P

RT

(
NA

NA +NB

)
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The total molar flow is constant due to the reaction stoichiometry so

NA +NB = NAf and we have

cA =
P

RT

NA
NAf

Substituting these values into the material balance, rearranging and

integrating over the volume gives

VR = −(1− εB)
(
RTNAf

ηkP

)∫ 0.03NAf

NAf

dNA
NA

VR = −
(

0.6

0.85

)
(82.06)(450)(12)

(0.429)(2.6)(1.5)
ln(0.03) = 1.32× 106cm3

and

Wc = ρBVR =
0.6

1000

(
1.32× 106

)
= 789 kg

We see from this example that if the Thiele modulus and effectiveness

factors are constant, finding the size of a fixed-bed reactor is no more

difficult than finding the size of a plug-flow reactor. �

Example 7.4: Mass-transfer limitations in a fixed-bed reactor

Reconsider Example 7.3 given the following two values of the mass-

transfer coefficient

km1 = 0.07 cm/s

km2 = 1.4 cm/s

Solution

First we calculate the Biot numbers from Equation 7.61 and obtain

B1 =
(0.07)(0.1)

(0.007)
= 1

B2 =
(1.4)(0.1)

(0.007)
= 20

Inspection of Figure 7.17 indicates that we expect a significant reduc-

tion in the effectiveness factor due to mass-transfer resistance in the

first case, and little effect in the second case. Evaluating the effective-

ness factors with Equation 7.65 indeed shows

η1 = 0.165

η2 = 0.397



406 Fixed-Bed Catalytic Reactors

which we can compare to η = 0.429 from the previous example with

no mass-transfer resistance. We can then easily calculate the required

catalyst mass from the solution of the previous example without mass-

transfer limitations, and the new values of the effectiveness factors

VR1 =
(

0.429

0.165

)
(789) = 2051 kg

VR2 =
(

0.429

0.397

)
(789) = 852 kg

As we can see, the first mass-transfer coefficient is so small that more

than twice as much catalyst is required to achieve the desired con-

version compared to the case without mass-transfer limitations. The

second mass-transfer coefficient is large enough that only 8% more cat-

alyst is required. �

Example 7.5: Second-order, isothermal fixed-bed reactor

Estimate the mass of catalyst required in an isothermal fixed-bed reac-

tor for the second-order, heterogeneous reaction.

A
k
-→ B

r = kc2
A k = 2.25× 105cm3/mol s

The gas feed consists of A and an inert, each with molar flowrate of

10 mol/s, the total pressure is 4.0 atm and the temperature is 550 K.

The desired conversion of A is 75%. The catalyst is a spherical pellet

with a radius of 0.45 cm. The pellet density is ρp = 0.68 g/cm3 and

the bed density is ρB = 0.60 g/cm3. The effective diffusivity of A is

0.008 cm2/s and may be assumed constant. You may assume the fluid

and pellet surface concentrations are equal.

Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− εB)ηkc2
A

NA(0) = NAf (7.98)

between the limits NAf and 0.25NAf . We again express the concentra-

tion of A in terms of the molar flows

cA =
P

RT

(
NA

NA +NB +NI

)
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As in the previous example, the total molar flow is constant and we

know its value at the entrance to the reactor

NT = NAf +NBf +NIf = 2NAf

Therefore,

cA =
P

RT

NA
2NAf

(7.99)

Next we use the definition of Φ for nth-order reactions given in

Equation 7.47

Φ = R
3

[
(n+ 1)kcn−1

A

2De

]1/2

= R
3


(n+ 1)k

2De

(
P

RT

NA
2NAf

)n−1



1/2

(7.100)

Substituting in the parameter values gives

Φ = 9.17

(
NA

2NAf

)1/2

(7.101)

For the second-order reaction, Equation 7.101 shows that Φ varies with

the molar flow, which means Φ and η vary along the length of the re-

actor as NA decreases. We are asked to estimate the catalyst mass

needed to achieve a conversion of A equal to 75%. So for this particular

example, Φ decreases from 6.49 to 3.24. As shown in Figure 7.9, we

can approximate the effectiveness factor for the second-order reaction

using the analytical result for the first-order reaction, Equation 7.42,

η = 1

Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.102)

Summarizing so far, to compute NA versus VR, we solve one differ-

ential equation, Equation 7.98, in which we use Equation 7.99 for cA,

and Equations 7.101 and 7.102 for Φ and η. We march in VR until

NA = 0.25NAf . The solution to the differential equation is shown in

Figure 7.26. The required reactor volume and mass of catalyst are:

VR = 361 L, Wc = ρBVR = 216 kg

As a final exercise, given that Φ ranges from 6.49 to 3.24, we can

make the large Φ approximation

η = 1

Φ
(7.103)
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Figure 7.26: Molar flow of A versus reactor volume for second-order,

isothermal reaction in a fixed-bed reactor.

to obtain a closed-form solution. If we substitute this approximation

for η, and Equation 7.100 into Equation 7.98 and rearrange we obtain

dNA
dV

= −(1− εB)
√
k(P/RT)

3/2

(R/3)
√

3/DA(2NAf )3/2
N

3/2
A

Separating and integrating this differential equation gives

VR =
4
[
(1− xA)−1/2 − 1

]
NAf (R/3)

√
3/DA

(1− εB)
√
k(P/RT)

3/2
(7.104)

Large Φ approximation

The results for the largeΦ approximation also are shown in Figure 7.26.

Notice from Figure 7.9 that we are slightly overestimating the value

of η using Equation 7.103, so we underestimate the required reactor

volume. The reactor size and the percent change in reactor size are

VR = 333 L, ∆ = −7.7%

Given that we have a result valid for all Φ that requires solving only a

single differential equation, one might question the value of this closed-
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form solution. One advantage is purely practical. We may not have

a computer available. Instructors are usually thinking about in-class

examination problems at this juncture. The other important advantage

is insight. It is not readily apparent from the differential equation what

would happen to the reactor size if we double the pellet size, or halve

the rate constant, for example. Equation 7.104, on the other hand,

provides the solution’s dependence on all parameters. As shown in

Figure 7.26 the approximation error is small. Remember to check that

the Thiele modulus is large for the entire tube length, however, before

using Equation 7.104. �

Example 7.6: Hougen-Watson kinetics in a fixed-bed reactor

The following reaction converting CO to CO2 takes place in a catalytic,

fixed-bed reactor operating isothermally at 838 K and 1.0 atm

CO+ 1

2
O2 -→ CO2 (7.105)

The following rate expression and parameters are adapted from a dif-

ferent model given by Oh et al. [16]. The rate expression is assumed to

be of the Hougen-Watson form

r = kcCOcO2

1+KcCO
mol/s cm3 pellet

The constants are provided below

k = 8.73× 1012 exp(−13,500/T) cm3/mol s

K = 8.099× 106 exp(409/T) cm3/mol

DCO = 0.0487 cm2/s

in which T is in Kelvin. The catalyst pellet radius is 0.1 cm. The feed

to the reactor consists of 2 mol% CO, 10 mol% O2, zero CO2 and the

remainder inerts. Find the reactor volume required to achieve 95% con-

version of the CO.

Solution

Given the reaction stoichiometry and the excess of O2, we can neglect

the change in cO2 and approximate the reaction as pseudo-first order
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in CO

r = k′cCO

1+KcCO
mol/s cm3 pellet

k′ = kcO2f

which is of the form analyzed in Section 7.4.4. We can write the mass

balance for the molar flow of CO,

dNCO

dV
= −(1− εB)ηr(cCO)

in which cCO is the fluid CO concentration. From the reaction stoichi-

ometry, we can express the remaining molar flows in terms of NCO

NO2 = NO2f + 1/2(NCO −NCOf )

NCO2 = NCOf −NCO

N = NO2f + 1/2(NCO +NCOf )

The concentrations follow from the molar flows assuming an ideal-gas

mixture

cj =
P

RT

Nj

N

To decide how to approximate the effectiveness factor shown in Fig-

ure 7.14, we evaluate φ = KC0cC0, at the entrance and exit of the fixed-

bed reactor. With φ evaluated, we compute the Thiele modulus given

in Equation 7.58 and obtain

φ = 32.0 Φ= 79.8, entrance

φ = 1.74 Φ = 326, exit

It is clear from these values and Figure 7.14 that η = 1/Φ is an excellent

approximation for this reactor. Substituting this equation for η into the

mass balance and solving the differential equation produces the results

shown in Figure 7.27. The concentration of O2 is nearly constant, which

justifies the pseudo-first-order rate expression. Reactor volume

VR = 233 L

is required to achieve 95% conversion of the CO. Recall that the volu-

metric flowrate varies in this reactor so conversion is based on molar

flow, not molar concentration. Figure 7.28 shows how Φ and φ vary

with position in the reactor. �



7.7 Fixed-Bed Reactor Design 411

CO

CO2

O2

c
j

(m
o
l/

c
m

3
)

VR (L)

250200150100500

1.4e-05

1.2e-05

1e-05

8e-06

6e-06

4e-06

2e-06

0

Figure 7.27: Molar concentrations versus reactor volume.
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Figure 7.28: Dimensionless equilibrium constant and Thiele modu-

lus versus reactor volume. Values indicate η = 1/Φ is a

good approximation for entire reactor.
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Parameter Value Units

Pf 2.02× 105 N/m2

Tf 550 K

Rt 5.0 cm

uf 75 cm/s

Ta 325 K

Uo 5.5× 10−3 cal/(cm2 Ks)

∆HR1 −67.63× 103 cal/(mol CO K)

∆HR2 −460.4× 103 cal/(mol C3H6 K)

Ĉp 0.25 cal/(g K)

µf 0.028× 10−2 g/(cm s)

ρb 0.51 g/cm3

ρp 0.68 g/cm3

Table 7.6: Feed flowrate and heat-transfer parameters for the fixed-

bed catalytic converter.

In the previous examples, we have exploited the idea of an effec-

tiveness factor to reduce fixed-bed reactor models to the same form as

plug-flow reactor models. This approach is useful and solves several

important cases, but this approach is also limited and can take us only

so far. In the general case, we must contend with multiple reactions

that are not first order, nonconstant thermochemical properties, and

nonisothermal behavior in the pellet and the fluid. For these cases, we

have no alternative but to solve numerically for the temperature and

species concentrations profiles in both the pellet and the bed. As a final

example, we compute the numerical solution to a problem of this type.

We use the collocation method to solve the next example, which

involves five species, two reactions with Hougen-Watson kinetics, both

diffusion and external mass-transfer limitations, and nonconstant fluid

temperature, pressure and volumetric flowrate.

Example 7.7: Multiple-reaction, nonisothermal fixed-bed reactor

Evaluate the performance of the catalytic converter in converting CO

and propylene. Determine the amount of catalyst required to convert

99.6% of the CO and propylene. The reaction chemistry and pellet mass-

transfer parameters are given in Table 7.5. The feed conditions and

heat-transfer parameters are given in Table 7.6.
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Solution

The fluid balances govern the change in the fluid concentrations, tem-

perature and pressure. The pellet concentration profiles are solved

with the collocation approach. The pellet and fluid concentrations are

coupled through the mass-transfer boundary condition. The fluid con-

centrations are shown in Figure 7.29. A bed volume of 1098 cm3 is

required to convert the CO and C3H6. Figure 7.29 also shows that oxy-

gen is in slight excess.

The reactor temperature and pressure are shown in Figure 7.30. The

feed enters at 550 K, and the reactor experiences about a 130 K temper-

ature rise while the reaction essentially completes; the heat losses then

reduce the temperature to less than 500 K by the exit. The pressure

drops from the feed value of 2.0 atm to 1.55 atm at the exit. Notice the

catalytic converter exit pressure of 1.55 atm must be large enough to

account for the remaining pressure drops in the tail pipe and muffler.

In Figures 7.31 and 7.32, the pellet CO concentration profile at sev-

eral reactor positions is displayed. The feed profile, marked by ➀ in

Figure 7.32, is similar to the one shown in Figure 7.23 of Example 7.2

(the differences are caused by the different feed pressures). We see

that as the reactor heats up, the reaction rates become large and the

CO is rapidly converted inside the pellet. By 490 cm3 in the reactor, the

pellet exterior CO concentration has dropped by two orders of magni-

tude, and the profile inside the pellet has become very steep. As the

reactions go to completion and the heat losses cool the reactor, the

reaction rates drop. At 890 cm3, the CO begins to diffuse back into

the pellet. Finally, the profiles become much flatter near the exit of the

reactor.

It can be numerically challenging to calculate rapid changes and

steep profiles inside the pellet. The good news, however, is that accu-

rate pellet profiles are generally not required for an accurate calculation

of the overall pellet reaction rate. The reason is that when steep pro-

files are present, essentially all of the reaction occurs in a thin shell

near the pellet exterior. We can calculate accurately down to concen-

trations on the order of 10−15 as shown in Figure 7.32, and by that

point, essentially zero reaction is occurring, and we can calculate an

accurate overall pellet reaction rate. It is always a good idea to vary the

numerical approximation in the pellet profile, by changing the number

of collocation points, to ensure convergence in the fluid profiles. �
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Figure 7.29: Fluid molar concentrations versus reactor volume.
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Figure 7.30: Fluid temperature and pressure versus reactor volume.



7.7 Fixed-Bed Reactor Design 415

490900 890 990 1098

VR (cm3)

40

➃ ➄ ➅ ➆➂➁➀

Figure 7.31: Reactor positions for pellet profiles.
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Figure 7.32: Pellet CO profiles at several reactor positions.


