
4
The Material Balance for Chemical

Reactors

4.1 General Mole Balance

Consider an arbitrary reactor volume element depicted in Figure 4.1,

which has inlet and outlet streams with volumetric flowrates Q0 and

Q1, respectively. The molar concentrations of component j in the two

streams are given by cj0 and cj1 and the production rate of component

j due to chemical reactions is Rj . The statement of conservation of

mass for this system takes the form,




rate of

accumulation

of component j


 =

{
rate of inflow

of component j

}
−
{

rate of outflow

of component j

}

+




rate of generation

of component j by

chemical reactions


 (4.1)
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Figure 4.1: Reactor volume element.
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112 The Material Balance for Chemical Reactors

In terms of the defined variables, we can write Equation 4.1 as,

d

dt

∫

V
cjdV =Q0cj0 −Q1cj1 +

∫

V
RjdV (4.2)

Equation 4.2 applies to every chemical component in the system, j =
1,2, . . . ,ns , including inerts, which do not take place in any reactions.

One can, of course, include volume elements with more than two flow

streams by summing with the appropriate sign over all streams enter-

ing and leaving the reactor. For the balances in this chapter, there will

be two or fewer flow streams. Notice also that we are assuming that

component j enters and leaves the reactor volume element only by

convection with the inflow and outflow streams. In particular, we are

neglecting diffusional flux through the boundary of the volume element

due to a concentration gradient. The diffusional flux will be considered

during the development of the material balance for the packed-bed re-

actor.

Rate expressions. To solve the reactor material balance, we require

an expression for the production rate, Rj , for each component. As

shown in Chapter 2, the production rate can be computed directly from

the stoichiometry and the reaction rates for all reactions, ri. Therefore

we require an expression for the reaction rates in terms of the concen-

trations of the species. This topic occupies the majority of Chapter 5.

For the purposes of illustrating the material balances in this chapter,

we simply use some common reaction-rate expressions without deriva-

tion. These rate expressions may be regarded as empirical facts until

the next chapter when the theoretical development of the rate expres-

sions is provided.

4.2 The Batch Reactor

The batch reactor is assumed to be well stirred, so there are no con-

centration gradients anywhere in the reactor volume. In this case it is

natural to consider the entire reactor contents to be the reactor volume

element as in Figure 4.2, and V = VR . Because the reactor is well stirred,

the integrals in Equation 4.2 are simple to evaluate,
∫

VR

cjdV = cjVR (4.3)

∫

VR

RjdV = RjVR (4.4)
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Rj

Figure 4.2: Batch reactor

volume element.

Because the reactor is charged with reac-

tants at t = 0, and nothing is added or

removed from the reactor until the stop-

ping time, the inflow and outflow stream

flowrates are zero, Q0 =Q1 = 0.

Substituting these results into Equa-

tion 4.2 gives the general batch reactor

design equation,

d
(
cjVR

)

dt
= RjVR (4.5)

Equation 4.5 applies whether the reactor

volume is constant or changes during the

course of the reaction. If the reactor vol-

ume is constant, which is sometimes a

good approximation for liquid-phase reactions, VR can be divided out

of both sides of Equation 4.5 to give

dcj

dt
= Rj (4.6)

Be sure to use Equation 4.5 rather than Equation 4.6 if the reactor vol-

ume changes significantly during the course of the reaction.

4.2.1 Analytical Solutions for Simple Rate Laws

In complex and realistic situations, the material balance for the batch

reactor must be solved numerically. However, if the reactor is iso-

thermal, and the rate laws are assumed to be quite simple, then an-

alytical solutions of the material balance are possible. Analytical solu-

tions are valuable for at least two reasons. First, due to the closed form

of the solution, analytical solutions provide insight that is difficult to

achieve with numerical solutions. The effect of parameter values on

the solution is usually more transparent, and the careful study of ana-

lytical solutions can often provide insight that is hard to extract from

numerical computations. Secondly, even if one must compute a numer-

ical solution for a problem of interest, the solution procedure should

be checked for errors by comparison to known solutions. Comparing a

numerical solution procedure to an analytical solution for a simplified

problem provides some assurance that the numerical procedure has

been constructed correctly. Then the verified numerical procedure can
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Figure 4.25: To achieve the same conversion, the CSTR is smaller

than the PFR for irreversible, nth-order kinetics, nega-

tive order, n < 0.

Example 4.8: The PFR versus CSTR with separation

We have noticed that a PFR achieves higher conversion than an equiva-

lent volume CSTR for the irreversible reaction with first-order kinetics

A -→ B r = kcA

Consider the case in which we add separation. Find a single CSTR and

separator combination that achieves the same conversion as the PFR.

You may assume a perfect separation of A and B, the feed is a pure A

stream, and kθ = 1 for the PFR.

Solution

The PFR achieves a fractional conversion of A

xPFR = 1−NA/NA0 = 1− exp(−kθ) = 0.632

For an equivalent volume CSTR without separation, the conversion of

A is

xCSTR = 1−NA/NA0 = kθ/(1 + kθ) = 0.5

The goal is to increase the achievable conversion in the CSTR using

separation. Education in chemical engineering principles leads one im-

mediately to consider recycle of the unreacted A as a means to increase

this conversion. Consider the flowsheet depicted in Figure 4.26. A frac-

tion of the outflow from the CSTR is recycled, the product B is removed

and the unreacted A is combined with the feed as the inflow of the CSTR.
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Figure 4.26: PFR versus CSTR with recycle and separation.

Given the assumption of perfect separation, we can achieve essentially

complete conversion of A for kθ = 1 with complete recycle, so our goal

here is to calculate the fractional recycle, α, that achieves exactly the

PFR conversion. For kθ < 1 the achievable conversion is less than one

as discussed in Exercise 4.14.

Notice first that the mean residence time of the CSTR, θ′, is less

than that for the PFR, θ, because the flowrate has increased due to

the recycle. Notice that with perfect separation, pure A streams are

combined at the mixer, and Q0/Q1 = NA0/NA1 so

θ′ = VR/Q1 = (VR/Q0)(Q0/Q1) = θNA0/NA1

We may consider four variables to specify the state of the system:

α,NA1,NA2,NA; and we can write three component A material balances

for the reactor, splitter at reactor exit and mixer at reactor inlet

reactor: NA2 = NA1/(1 + kθNA0/NA1)

splitter: NA = (1−α)NA2

mixer: NA1 = NA0 +αNA2

The separator balance is trivial because the separation of A is perfect,

and, therefore, the molar flow of A is conserved across the recycle
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Figure 4.27: Overall and per-pass conversion of A as a function of

fractional recycle, α.

stream. Because the inlet flow of A is not specified, it is convenient

to divide the preceding equations by NA0, define dimensionless molar

flows, and rearrange to obtain

reactor: NA2(1+ kθ/NA1)−NA1 = 0

splitter: NA − (1−α)NA2 = 0

mixer: 1+αNA2 −NA1 = 0 (4.91)

We can specify a single variable as known and solve for the remaining

three with the three equations. For example, if we specify the recycle

fraction, α, we can solve Equations 4.91 for NA,NA1,NA2, and compute

the conversion from xA = 1 − NA. Figure 4.27 shows the resulting

conversion of A plotted as a function of α. We can see from Figure 4.27

that the PFR conversion is achieved at about α = 0.65. If we want a

more accurate answer, we can set NA = exp(−kθ) = 0.3678 and solve
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numerically for α,NA1,NA2, with Equations 4.911 , and the result is

α = 0.6613

�

CSTR equivalence principle. Example 4.8 is motivated by a recent

result of Feinberg and Ellison called the CSTR equivalence principle of

reactor-separator systems [4]. This surprising principle states:

For a given reaction network with ni linearly independent re-

actions, any steady state that is achievable by any reactor-

separator design with total reactor volume V is achievable by

a design with not more than ni + 1 CSTRs, also of total reac-

tor volume V . Moreover the concentrations, temperatures and

pressures in the CSTRs are arbitrarily close to those occurring

in the reactors of the original design.

Applying this principle to the last example, we know that any achiev-

able concentration of the PFR for a single reaction is achievable with a

CSTR and separation. Note the number of CSTRs can be reduced from

ni + 1 to ni in certain situations, such as the one considered in Exam-

ple 4.8. And we know the concentration in the CSTR will be achieved

somewhere in the PFR.

4.8 Stochastic Simulation of Chemical Reactions

We wish to introduce next a topic of increasing importance to chemi-

cal engineers, stochastic (random) simulation. In stochastic models we

simulate quite directly the random nature of the molecules. We will

see that the deterministic rate laws and material balances presented

in the previous sections can be captured in the stochastic approach

by allowing the numbers of molecules in the simulation to become

large. From this viewpoint, deterministic and stochastic approaches

are complementary. Deterministic models and solution methods are

quite efficient when the numbers of molecules are large and the ran-

dom behavior is not important. The numerical methods for solution

of the nonlinear differential equations of the deterministic models are

1Note one can solve this simple problem analytically as well. Eliminate αNA2 from

the second and third equations in Equation 4.91. Substitute the result into the first

equation and solve the resulting quadratic equation.
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also highly developed. The stochastic modeling approach is appropri-

ate if the random nature of the system is one of the important fea-

tures to be captured in the model. These situations are becoming in-

creasingly important to chemical engineers as we explore reactions at

smaller and smaller length scales. For example, if we are modeling the

chemical transformation by reaction of only a few hundreds or thou-

sands of molecules at an interface, we may want to examine explicitly

the random fluctuations taking place. In biological problems, we often

consider the interactions of only several hundred or several thousand

protein molecules and cells. In sterilization problems, we may wish to

model the transient behavior until every last organism is eliminated.

It is perhaps best to illustrate features of the stochastic approach

with a simple example. Instead of the common case in which we have

on the order of Avogadro’s number of reacting molecules, assume we

have only a hundred molecules moving randomly in the gas phase and

we wish to follow the reaction

A
k1
-→ B (4.92)

B
k2
-→ C (4.93)

in a constant-volume batch reactor. In this section we take reaction

statements quite literally. We assume these reactions are not merely

observed stoichiometries, but actual molecular events.

The probability of reaction is assumed proportional to the

r1 = k1xA, r2 = k2xB

in which xj is the number of component j molecules in the reactor vol-

ume. Note xj is an integer, unlike cj of the deterministic model, which

is real. The reaction probabilities play the role of the rate expressions

in the deterministic models. Given the stoichiometry and the reaction

probabilities, we would like to simulate the expected behavior of the

reaction network. One way to accomplish this task is the Gillespie algo-

rithm, which we describe next. The basic idea of the Gillespie algorithm

is to: (i) choose randomly the time at which the next reaction occurs,

and (ii) choose randomly which reactions occurs at that time. Of course

we do not choose completely randomly. If the total reaction probabili-

ties are large, it is intuitively clear that the time interval until the next

reaction should be small, and, if reaction probability r1 is much larger

than r2, the first reaction is more likely to occur at the next reaction
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time. The beauty of the Gillespie algorithm is the simple and statisti-

cally correct manner in which these two random choices are made.

In a series of papers, Gillespie makes an elegant argument for the

use of stochastic simulation in chemical kinetic modeling [7, 8] and

provides the following simulation algorithm [7, p.2345].

1. Initialize. Set integer counter n to zero. Set the initial species

numbers, xj(0), j = 1, . . . ns . Determine stoichiometric matrix ν

and reaction probability laws (rate expressions)

ri = kih(xj)

for all reactions.

2. Compute reaction probabilities, ri = kih(xj). Compute total re-

action probability rtot =
∑
i ri.

3. Select two random numbers, p1, p2, from a uniform distribution

on the interval (0,1). Let the time interval until the next reaction

be

τ = − ln(p1)/rtot (4.94)

Determine reaction m to take place in this time interval. The

idea here is to partition the interval (0,1) by the relative sizes of

each reaction probability and then “throw a dart” at the interval

to pick the reaction that occurs. In this manner, all reactions are

possible, but the reaction is selected in accord with its probability.

See Figure 4.28.

4. Update the simulation time t(n+1) = t(n)+τ. Update the species

numbers for the single occurrence of the mth reaction via

xj(n+ 1) = xj(n)+ νmj , j = 1, . . . ns

Let n = n+ 1. Return to Step 2.

If rtot is the total probability for reaction, e−rtotτ is the probability that a

reaction has not occurred during time interval τ, which leads directly to

Equation 4.94 for choosing the time of the next reaction. We will derive

this fact in Chapter 8 when we develop the residence-time distribution

for a CSTR. Shah, Ramkrishna and Borwanker call this time the “interval

of quiescence,” and use it to develop a stochastic simulation algorithm

for particulate system dynamics rather than chemical kinetics [14].
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r1+r2
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r1+r20 1

Figure 4.28: Randomly choosing a reaction with appropriate proba-

bility; the interval is partitioned according to the rela-

tive sizes of the reaction rates; a random number p2

between zero and one is generated to determine the re-

action; in this case, m = 2 and the second reaction is

selected.

Figure 4.29 shows the results of this algorithm when starting with

xA = 100 molecules. Notice the random aspect of the simulation gives

a rough appearance to the number of molecules versus time, which

is quite unlike any of the deterministic simulations presented in Sec-

tion 4.2. In fact, because the number of molecules is an integer, the

simulation is actually discontinuous with jumps between simulation

times. But in spite of the roughness, we already can make out the

classic behavior of the series reaction: loss of starting material A, ap-

pearance and then disappearance of the intermediate species B, and

slow increase in final product C. Note also that Figure 4.29 is only one

simulation of the stochastic model. Unlike the deterministic models,

if we repeat this simulation, we obtain a different sequence of random

numbers and a different simulation. To talk about expected or aver-

age behavior of the system, we must perform many of these random

simulations and then compute the averages of quantities we wish to

report.

Next we explore the effect of increasing the initial number of A

molecules on a single simulation. The results for 1000 and 4000 ini-

tial A molecules are shown in Figures 4.30 and 4.31, respectively. We

see the random fluctuations become less pronounced. Notice that even

with only 4000 starting molecules, Figure 4.31 compares very favorably

with the deterministic simulation shown in Figure 4.11 of Section 4.2.

Another striking feature of the stochastic approach is the trivial
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Figure 4.29: Stochastic simulation of the first-order reactions

A -→B -→C starting with 100 A molecules.

level of programming effort required to make the simulations. In fact,

the biggest numerical challenge is producing the random numbers,2

and many well-developed algorithms are available for that task. The

computational time required for performing the stochastic simulation

may, however, be large. The solution time depends on the number of

simulation steps, and also on whether or not we must repeat the simu-

lations to calculate averages. Usually large numbers of simulation steps

are chosen when one has large numbers of initial molecules. If reliable

deterministic rate laws are available, at some point it becomes more

efficient to use the deterministic models as the number of molecules

increases.

But the stochastic approach is invaluable in several ways. It builds

a clear intuitive connection between the microscopic and the macro-

scopic. The microscopic level is characterized by discontinuous, ran-

dom molecular motion and the probability of collision as the basis

for chemical reaction rate. The macroscopic level is characterized by

2It is more accurate to use the term pseudo-random number here to distinguish

something we compute from a truly random number.
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Figure 4.30: Stochastic simulation of the first-order reactions

A -→B -→C starting with 1000 A molecules.
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Figure 4.31: Stochastic simulation of the first-order reactions

A -→B -→C starting with 4000 A molecules.
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smoothly varying concentrations, and deterministic rate laws and ma-

terial balances. Watching the transition in Figures 4.29–4.31 and then

finally to the deterministic Figure 4.11 is a nice illustration of this con-

nection and provides logical support for the construction of the deter-

ministic rate laws. It is possible to prove that the average of stochastic

simulations converges to the deterministic simulation as the number of

molecules becomes large, which is known as the thermodynamic limit.

As stressed earlier, the random fluctuations may be an important

physical behavior to include in the model. In this situation, the stochas-

tic approach is essential and a deterministic approach cannot be sub-

stituted. We illustrate with the hepatitis B virus model introduced in

Chapter 1.

Example 4.9: Stochastic versus deterministic simulation of a virus

model

Consider the hepatitis B virus model given in Chapter 1.

nucleotides
cccDNA
-→ rcDNA (4.95)

nucleotides+ rcDNA -→ cccDNA (4.96)

amino acids
cccDNA
-→ envelope (4.97)

cccDNA -→ degraded (4.98)

envelope -→ secreted or degraded (4.99)

rcDNA+ envelope -→ secreted virus (4.100)

Assume the system starts with a single cccDNA molecule, and no rcDNA

and no envelope protein, and use the following rate constants

[
xA xB xC

]T
=
[

1 0 0
]T

(4.101)

k
T =

[
1 0.025 1000 0.25 2 7.5× 10−6

]
(4.102)

Compare the results of a deterministic simulation to the average of 500

stochastic simulations. If these results are not the same, explain why

not.
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Figure 4.32: Species cccDNA versus time for hepatitis B virus model;

deterministic and average stochastic models.
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Figure 4.33: Species rcDNA versus time for hepatitis B virus model;

deterministic and average stochastic models.
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Figure 4.34: Envelope versus time for hepatitis B virus model; deter-

ministic and average stochastic models.
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Figure 4.35: Species cccDNA versus time for hepatitis B virus model;

two representative stochastic trajectories.

Solution

The reaction rates and production rates for Reactions 4.95–4.100 are

given by




r1

r2

r3

r4

r5

r6



=




k1xA
k2xB
k3xA
k4xA
k5xC
k6xBxC






RA
RB
RC


 =



r2 − r4

r1 − r2 − r6

r3 − r5 − r6


 (4.103)

in which A is cccDNA, B is rcDNA, and C is envelope.

Figures 4.32–4.34 show the deterministic model simulation and an

average of 500 stochastic simulations. Notice these results are not the

same, and we should investigate why not. Figure 4.35 shows two rep-

resentative stochastic simulations for only the cccDNA species. Notice

the first stochastic simulation does fluctuate around the deterministic

simulation as expected. The second stochastic simulation, however,

shows complete extinction of the virus. That is another possible steady

state for the stochastic model. In fact, it occurs for 125 of the 500
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BATCH
d(cjVR)

dt
= RjVR (4.104)

constant volume
dcj

dt
= Rj (4.105)

CSTR
d(cjVR)

dt
= Qf cjf −Qcj +RjVR (4.106)

constant density
dcj

dt
=

1

θ
(cjf − cj)+Rj (4.107)

steady state cj = cjf +Rjθ (4.108)

SEMI-BATCH
d(cjVR)

dt
= Qf cjf +RjVR (4.109)

PFR
∂cj

∂t
= −

∂(cjQ)

∂V
+Rj (4.110)

steady state
d(cjQ)

dV
= Rj (4.111)

constant flowrate
dcj

dθ
= Rj , θ = V/Qf (4.112)

Table 4.3: Summary of mole balances for several ideal reactors.

simulations. So the average stochastic simulation in Figures 4.32–4.34

consist of 75% trajectories that fluctuate about the deterministic trajec-

tory and 25% trajectories that go to zero. The two types of stochastic

trajectories therefore explain why the average stochastic model is not

equal to the deterministic model. We should bear this feature in mind

when using deterministic models with small numbers of molecules. �

4.9 Summary

We have introduced four main reactor types in this chapter: the batch

reactor, the continuous-stirred-tank reactor (CSTR), the semi-batch re-

actor, and the plug-flow reactor (PFR). Table 4.3 summarizes the mole

balances for these four reactors. We also have introduced some of the

basic reaction-rate expressions:

• first order, irreversible
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• first order, reversible

• second order, irreversible

• nth order, irreversible

• two first-order reactions in series

• two first-order reactions in parallel

• two second-order, reversible reactions

We developed the equations required to compute the volume of the

reactor if there is a significant volume change upon reaction. We require

an equation of state for this purpose. Tables 4.1 and 4.2 describe the

appropriate balances for a constant-density mixture, an ideal mixture,

and a mixture with a general equation of state.

Several of these simple mass balances with basic rate expressions

were solved analytically. In the case of multiple reactions with nonlin-

ear rate expressions (i.e., not first-order reaction rates), the balances

must be solved numerically. A high-quality ordinary differential equa-

tion (ODE) solver is indispensable for solving these problems. For a

complex equation of state and nonconstant-volume case, a differential-

algebraic equation (DAE) solver may be convenient.

We showed that the PFR achieves higher conversion than the CSTR

of the same volume if the reaction rate is an increasing function of

a component composition (n > 0 for an nth-order rate expression).

Conversely, the CSTR achieves higher conversion than the same-volume

PFR if the rate is a decreasing function of a component composition

(n < 0).

Finally, we introduced stochastic simulation to model chemical re-

actions occurring with small numbers of molecules. Each of these ran-

dom simulation trajectories has a rough appearance and the average

of many of these simulations is required to show the expected system

behavior. The stochastic model uses basic probability to compute reac-

tion rate. The probability of occurrence of a given reaction is assumed

proportional to the number of possible combinations of reactants for

the given stoichiometry. Two pseudo-random numbers are chosen to

determine: (i) the time of the next reaction and (ii) the reaction that oc-

curs at that time. The smooth behavior of the macroscopic ODE models

is recovered by the random simulations in the limit of large numbers

of reacting molecules. With small numbers of molecules, however, the

average of the stochastic simulation does not have to be equal to the

deterministic simulation. We demonstrated this fact with the simple,

nonlinear hepatitis B virus model.


