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Figure 10.5: Cell infection by a virus. The cells are uniformly dis-
tributed, and the virus is placed initially in the center
and diffuses outward. The cells fluoresce after they be-
come infected. The dark inner core shows dead cells.

large monomer droplets and initiate polymerization, but the total sur-
face area of the micelle phase is usually orders of magnitude larger than
the surface area of the large monomer droplets and the polymerization
in the droplets can be neglected.1

10.2.3 Biological Cells

Reactions involving living cells are ubiquitous in nature and, today,
also in the bioprocess industries. Improving our understanding of and
control over these reactions has large implications for human health.
Consider the interactions of cells and viruses, for example. Viral infec-
tion of cells is responsible for maladies such as the common cold, in-
fluenza, chickenpox, cold sores, Ebola hemorrhagic fever, AIDS, avian
influenza, and SARS. Figure 10.5 shows images of cell infection by a
virus. The cells are uniformly distributed, and the virus is placed ini-
tially in the center and diffuses outward. The cells fluoresce after they
become infected. The dark inner core shows the cells killed by the

1Alternatively, in dispersion polymerization, the monomer droplets are made much
smaller, usually by exposing the monomer phase to high shear rates, and the small
monomer droplets serve as the locus of polymerization without the presence of any
micellar phase.
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Figure 10.6: Basic fermentation system.

virus. Modeling the distribution of cells as a function of time since in-
fection and interaction with the signaling molecules released into their
environment enables quantitative predictions that can be tested and
verified with experimental measurement [5].

Living cells are also used to manufacture many important antibiotics
and other pharmaceuticals. Figure 10.6 displays a simple schematic of
a fermentation system used for antibiotic manufacture. The cells can
grow exponentially quickly so that although there are no cells in the
feed, they can establish a nonzero steady state in the CSTR, commonly
known as a chemostat in the bioprocess industries. The classic paper
[3] was one of the first to lay out the fundamentals for modeling the dy-
namic behavior of these kinds of cell populations. We further develop
the modeling of chemostats later in the chapter.

10.3 Population Balance

Given this brief overview of applications, we next develop the evolution
equation for the particle size distribution, known as the population bal-
ance. We first treat deterministic models with a single size coordinate
and single source of nucleation of new particles at a single (zero) size.
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concentration, R, is constant giving

B0(t) = kmmRm(t)

in which kmm is the mass transfer coefficient for the radical entry into
micelles. Finally, the monomer balance is given by

dM
dt
= 1
τ
(Mf −M)− vp

∫∞
0
kpiφf(L, t)L3dL

which accounts for the flow streams and the consumption of monomer
due to the polymerization taking place inside the particles.

Here we see already the fairly complicated set of equations required
to track the particle composition and size distribution, as well as the
continuous phase species. Again, the interactions between the micelle
balance and the population balance lead to complex dynamic behavior
such as sustained oscillations. See [16] for details on how to relax the
many simplifying assumptions made here. �

Example 10.4: Fermentation model

Write down a population balance for the cells and the continuous phase
balances for substrate and product to model fermentation in a CSTR.

Solution

In the bioprocess literature, a segregated model is one that explicitly
models the population of cells, i.e., includes a population balance. A
structured model is one that requires more than one chemical species
to describe the state of the cell. We choose cell mass to be the internal
coordinate describing the cell population.4 The rate of change of a
given cell’s mass, ṁ, due to the metabolic reactions is called the cell
growth rate, denoted µ. Cell growth rate is usually normalized by the
cell mass, so it has units of inverse time, and we have ṁ = µm. The
population balance is then

∂f(m, t)
∂t

= −∂(µmf(m, t))
∂m

+ B −D − 1
τ
f (10.17)

in which B accounts for production of new cells, usually by cell division,
which produces two new cells of roughly half the mass of the mother
cell. The death term D accounts for losses of cells of size m by, for

4Cell mass alone may be inadequate to predict cell division; cell age may also be
used if that is a better predictor of cell division.



594 Particulate Reactors

example, cell death and cell division. Note that, for convenience, the
outflow term is treated separately from the other death terms. The
continuous phase balances consist of the substrate(s), S, that the cells
consume for cell growth, and the product(s), P , secreted by the cells
as side products of their metabolic processes. The cell growth yield,
y , is the ratio of cell mass increase to substrate mass consumed. In
the segregated models, the cell growth rate and growth yield may be
functions of any of the continuous phase concentrations and the cell’s
mass. A typical balance would be [17]

dS
dt
= 1
τ
(Sf − S)−

∫∞
0
f(m, t)

µ(S,m)m
y(S,m)

dm

The formation rate of some products is often well correlated with the
cell growth rate. These are the so-called growth-associated products
such as enzymes and proteins. Many secondary metabolites, such as
antibiotics, are nongrowth-associated products, and they form at a rel-
atively constant rate, even if the cell growth rate is zero. A typical
product formation rate expression accounting for both forms is

qp(S,m) = αµ(S,m)+ β

and the product balance would be

dP
dt
= −1

τ
P +

∫∞
0
f(m, t)qp(S,m)m dm

�

10.5 Nonsegregated Fermentation Model

Given the complexity of determining B and D, and the metabolic func-
tions µ, y , and qp for cell lines and products of interest, fermentor
models are often simplified further to make them more tractable. The
first common simplification is to ignore the distribution of cells and
lump all cells together in a single species, biomass. Although this sim-
plification does violence to the known biology, we shall see that these
models still provide insight and useful predictions of aspects of fer-
mentor behavior. Given our previous starting point, we can define total
biomass as

X :=
∫∞

0
f(m, t)m dm
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If we assume that µ is only a weak function of cell mass (otherwise this
model simplification is not accurate), we can integrate the population
balance as follows. Multiply the population balance, Equation 10.17, by
m and integrate over all cell mass. The left-hand side becomes

∫∞
0

∂f(m, t)
∂t

m dm = d
dt

∫∞
0
f(m, t)m dm = dX

dt

Using integration by parts, the first term on the right-hand side of the
population balance becomes

−
∫∞

0

∂(µmf(m, t))
∂m

m dm = −m2µf
∣∣∣∞

0
+
∫∞

0
f(m, t)µm dm

The integrand vanishes at the two limits, and µ can be taken outside
the integral giving

−
∫∞

0

∂(µmf(m, t))
∂m

m dm = µX

The cell division terms cancel in the integration over B and D because
cell mass is conserved on cell division. If cell death is negligible, then
these terms disappear completely. The final result, neglecting cell death,
is that the population balance reduces to the following total biomass
balance

dX
dt
= µ(S)X − 1

τ
X

The substrate and product balances can be simplified if we assume that
the yield and product formation rate do not vary appreciably over the
cell population. Taking these terms outside the integrals gives

dS
dt
= 1
τ
(Sf − S)−

µ(S)
y(S)

X

dP
dt
= −1

τ
P + qp(S)X

We next discuss the functional form of the cell growth rate and its
dependence on the substrate.

Substrate limited growth. Many different cell growth expressions
have been found useful [1, 17]
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Monod equation: µ = µmS
Ks + S

Blackman equation: µ =

µ = µm S ≥ 2Ks
µ = µmS

2Ks S < 2Ks

Tessier equation: µ = µm(1− e−KsS)

Moser equation: µ = µmSn

Ks + Sn

Contois equation: µ = µmS
KsxX + S

We recognize the Monod equation [12] for cell growth rate as the sim-
plest form of the Langmuir adsorption isotherm and the resulting Hougen-
Watson kinetics for reaction rates on catalyst surfaces discussed in
Chapter 5. When multiple substrates, S1, S2, . . ., affect cell growth, a
simple model for overall growth rate is to take the smallest rate as the
limiting growth rate

µ =min
j
µ(Sj)

Growth inhibitors. At high substrate or product concentrations, cell
growth is inhibited. Common functional forms for this inhibition are
the following:

substrate inhibition: µ = µmS
Ks + S +K1S2

product inhibition: µ = µmS
Ks
(

1+ P
Kp

)
+ S

Reactor behavior. Assuming Monod kinetics for cell growth, the com-
bined biomass and substrate mass balances are

dX
dt
=
(
−D + µmS

Ks + S

)
X

dS
dt
= D(Sf − S)−

1
y

(
µmS
Ks + S

)
X (10.18)

in which we have used dilution rate, D = 1/τ , instead of residence
time for the outflow terms.5 Since there is no product inhibition in

5There should be no confusion with the D in the population balance death term in
this section.
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this model, the product balance is not required to solve the biomass
and substrate balances. We first analyze the steady state of this model.
Setting the time derivatives to zero, we notice first from the biomass
balance that Xs = 0 is a steady state, and substituting this result into
the substrate balance gives Ss = Sf . We can find a second steady state
by setting the bracketed term to zero in the biomass equation and
solving for Ss , which gives Ss = DKs/(µm − D). Substituting this re-
sult into the substrate balance and solving yields Xs = y(Sf − Ss) =
y(Sf −DKs/(µm −D)). So we see that there are two steady states for
all values of parameters:

Xs1 = 0 Ss1 = Sf

Xs2 = y(Sf − Ss2) Ss2 =
DKs
µm −D

(10.19)

Consider the dilution rate to be the parameter of interest, and notice
that the second steady state makes physical sense only if D < Dc . Oth-
erwise Xs is negative and Ss > Sf . We can solve Ss2 = Sf to find this
critical value of dilution rate and obtain

Dc =
µmSf
Ks + Sf

For high dilution rate, D > Dc , we have only one physically meaningful
steady state in which Xs = 0 and Ss = Sf . In this parameter regime, the
dilution rate is too large for the system to support any biomass and
any initial biomass simply washes out of the reactor. This steady state
is known as the “washout” steady state. For low dilution rate D < Dc ,
there are two possible steady states, the washout steady state, and a
steady state with positive biomass production and substrate consump-
tion. Here we have another classic case of steady-state multiplicity as
studied in Chapter 6. Exercise 10.7 asks you to show that the washout
steady state is stable for D > Dc and unstable for D < Dc . The sec-
ond, nontrivial steady state has the opposite stability; it is unstable
for D > Dc and stable for D < Dc . These results are shown in Figure
10.12 for a range of dilution rates. The other parameter values used to
prepare the figure are

µm = 1 Ks = 1 Sf = 5 y = 1

Finally, increasing dilution rate further, we notice that there is a singu-
larity in Ss2 at D = µm, and the substrate steady state changes sign and
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Figure 10.12: The two steady-state biomass and substrate concen-
trations versus dilution rate; stable (solid), unstable
(dashed). Stability changes at D = Dc . Also shown
is total biomass production rate, DX, for the stable
steady state.

becomes negative and the biomass becomes positive. Although this
steady state is then also stable, it is not physically meaningful because
of the negative substrate concentration (see also Exercise 10.7).

Notice that the steady-state production rate of biomass is given by
the product DXs , which has units of mass per volume of reactor per
time. This quantity is also plotted in Figure 10.7. Notice that it has an
optimum, which can be found by differentiating DXs2 with respect to
D and setting to zero. The result is

D0 = µm
(

1−
√

Ks
Ks + Sf

)
(10.20)

A low dilution rate gives a high reactor biomass concentration but little
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biomass outflow from the reactor.6 Operating at a high dilution rate
leads to washout and zero biomass production. An optimum naturally
exists between these operational extremes.

10.6 Stochastic Models of Nucleation and Growth

Turning attention back to the general topic of modeling particulate
reactors, we can also consider the phenomena of particle nucleation
and growth entirely from a stochastic perspective. As we saw in the
discussion of stochastic kinetics in Chapter 4, the stochastic perspec-
tive provides valuable understanding of certain experimental observa-
tions, such as dispersion (spreading) in the particle size distribution
with time. We also can derive the population balance of the previous
sections starting with the stochastic equations and taking the limit of
large numbers and small sizes of the solute molecules compared to the
small numbers and large sizes of the growing crystals.

10.6.1 Modeling Particle Growth and Dissolution

We start with a simple experiment to make the discussion concrete.
Imagine we have a single, pure-solid particle of some initial size in a
well-stirred supersaturated solution of solute molecules with some ini-
tial supersaturation. This experiment is easy to conceptualize and also
easy to perform in the laboratory. We assume that the particle’s crystal
structure and geometric shape are not important variables needed to
describe the growth rate of the particle. This assumption is valid for
certain kinds of particles. Because we have a single particle experienc-
ing only growth, the particle size distribution is arbitrarily narrow at
this single size. The supersaturation in the solution phase is the driv-
ing force for particle growth. If the particle were to grow large enough
that it removes enough solute from the solution phase, then the so-
lution phase approaches saturation and the driving force for further
growth drops to zero. The equilibrium state for this simple system is
a single particle of a size larger than the initial size, coexisting with
a saturated solution phase. Similarly, if the solution phase is initially
undersaturated, then the particle dissolves, releasing solute back to
the solution phase until either the particle dissolves completely, or the
solution phase reaches saturation.

6Recall that one sells the mass leaving the reactor, not the reactor concentration.


